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A COMPARISON OF LOW-GRAVITY MEASUREMENTS ON-BOARD COLUMBIA

DURING STS-40

Abstract

The first NASA SpacelabLife Sciencesmission(SLS-1)flew 5 June to 14 June 1991 on

the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body's

adaptation to the low-gravity conditions of space flight and the body's readjustment aider the

mission to the 1 g environment of earth. In addition to the life sciences experiments manifested

for the Spacelab module, a variety of experiments in other scientific disciplines flew in the

Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several

principal investigators designed and flew specialized accelerometer systems to better assess the

results of their experiments by means of a low-gravity environment characterization. This was

also the first flight of the NASA Microgravity Science and Applications Division (MSAD)

sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA

Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment

accelerometer (OARE). We present a brief introduction to seven STS-40 accelerometer systems

and discuss and compare the resulting data. During crew sleep periods, acceleration magnitudes

in the 10 -6 to 10 -5 g range were recorded in the Spacelab module and on the GAS Bridge

Assembly. Magnitudes increased to the 10 -4 g level during periods of nominal crew activity.

Vernier thruster firings caused acceleration shifts on the order of 10 -4 g and primary thruster

firings caused accelerations as great as 10 -2 g. Frequency domain analysis revealed typical

excitation of Orbiter and Spacelab structural modes at 3.5, 4.7, 5.2, 6.2, 7, and 17 Hz.



B-3

1. Introduction

The first NASA Spacelab Life Sciences mission (SLS-1) flew 5 lune to 14 June 1991 on

the orbiter Columbia (mission STS-40). The purpose of the mission was to investigate the human

body's adaptation to the low-gravity conditions of space flight and the body's readjustment after

the mission to the 1 g environment of earth. In addition to the life sciences experiments

manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in

the Spaeelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several

principal investigators designed and flew accelerometer systems to characterize the low-gravity

environment. This was done to better assess the results of their experiments. This was also the

first flight of the MSAD-sponsored SAMS and the first flight of the OEX-sponsored OARE. This

paper presents a brief introduction to seven accelerometer systems which measured and recorded

acceleration levels during STS-40 and discusses the resulting data.

2. Accelerometer Systems

The STS-40 accelerometer systems to be discussed are listed in Table 1. Two of the

systems flew in support of individual crystal growth experiments - the Worcester Polytechnic

Institute (WPI) Fluid Behavior and Zeolite Crystal Growth Experiments, and the GTE Gallium

Arsenide Crystal Growth Experiment.[1,2] The NASA Goddard Orbiter Stability Experiment

(OSE) was designed to characterize Orbiter g-jitter by measuring angular accelerations using sun

sensors. The ESA Solid State Micro-Accelerometer (SSMA) recorded data as part of a

component performance testing procedure. The OARE system, a space accelerometer package

with on-orbit calibration capabilities, was designed to measure and record the Orbiter

aerodynamic acceleration environment from the free molecule flow regime through the rarefied-

flow transition into the hypersonic continuum regime.J3,4] The OEX High Resolution

Acceleration Package (HiRAP) was also designed to measure low frequency aerodynamic

accelerations with the goal of determining Orbiter re-entry aerodynamic flight performance
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characteristics.[5-14] SAMS flew in support of the Solid Surface Combustion Experiment

(SSCE). SAMS was designed to support multiple experiments and multiple missions; it is

scheduled to fly on all Orbiter missions which include MSAD-sponsored low-gravity experiments.

The resulting data base is expected to contribute to the characterization of the low-gravity

environment of Orbiters.[15-17] The locations of the GAS Bridge Assembly and of the SAMS

units in the Spacelab are shown in Figs. 1 and 2.

2.1 GTE Gallium Arsenide Crystal Growth Experiment

The GTE experiment was designed to study the effect of reduced gravity on the growth of

gallium arsenide (GaAs) semiconductor material. [1] The experiment was located in GAS Canister

G-052 and was oriented with the accelerometer x- and y-axes parallel to those of the Orbiter and

with the z-axes anti-parallel. The GTE triaxial sensor accelerometer was developed and tested

prior to the STS-40 flight on a NASA KC-135 Microgravity Research Aircratt.[2] On STS-40, a

Sundstrand QA-2000 sensor was aligned with the crystal growth axis (x-axis) and two QA-1400

sensors were used in the y- and z-directions. The measurement range for the system was Ixl0 -5

to lxl0 -2 g and the data were lowpass filtered at 16 Hz with a 3 dB/decade rolloff. A Tattletale

IV microcomputer was used for data processing and storage, allowing 155 kilobytes of memory

per axis.

A specialized data processing technique was developed to reduce memory requirements.

For a two second period, 1O0 measurements were made and initially stored. For each two second

block of data, a least squares fit to the data was computed and the slope and intercept of the fit

were recorded. Two other statistics were recorded - the standard deviation of the 100 samples

and the value of the point with the largest deviation from the intercept value. Upon calculation

and storage of these values, the 100 data points were discarded and the next two seconds of data

were recorded. At five minute intervals, absolute time, relative time, microcomputer temperature,

and accelerometer temperature were recorded.
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2.2 WPI Fluid Behavior and Zeolite Crystal Growth Experiments

The WPI accelerometer system flew on STS-40 in conjunction with zeolite crystal growth

and fluid behavior experiments in GAS Canister G-408. The zeolite crystal growth experiment

involved nucleation and subsequent growth from solution. It was hypothesized that the mass

transfer and, thus, the growth rate would be functions of the g-jitter environment. The fluid

behavior experiment involved measurements of quantity and heat and mass transfer in the re-

establishment of equilibrium. It was expected that these processes as well as transfer of additional

liquid to the test vessels would also be affected by the g-jitter environment.

The accelerometer system was flown to assess the performance of these experiments as a

function of the acceleration environment. The system consists of three piezoelectric sensors and a

system for analog signal processing, digital sampling, and storage of data. Accelerometer axes

were aligned with the roll, pitch, and yaw axes of the Orbiter. A low frequency data cutoff of

approximately 0.8 I-Iz was established by the a.c. nature of the piezoelectric elements. The high

frequency cutoff was set at 10 I-Iz using a lowpass filter associated with the signal amplifiers.

Each of the three channels was monitored by positive and negative peak detectors which were

read at a rate of 1 Hz. The greatest magnitude value for each one second window for each

channel was stored together with sign. For the data presented here, the magnitude of the

acceleration vector (root sum of squares of the three axes) is used. Resolution of the system was

10 ttg, and full scale was 20,000 _tg.

2.3 NASA/GSFC Orbiter Stability Experiment

The primary objective of the Orbiter Stability Experiment (OSE) was to obtain a

characterization of the Orbiter's spectrum of high frequency angular motions. The OSE measures

angular accelerations directly with sun sensors by observing changes in the orientation of the

Orbiter in pitch and roll relative to the Sun. The OSE detected the Orbiter's motion by measuring

the direction of incoming sunlight with two precision Lockheed Intermediate Sun Sensors (LISS)

provided by the Lockheed Missiles and Space Co. SPARCS Office, White Sands Missile Range,

NM, under contract to the Wallops Flight Facility of the NASA Goddard Space Flight Center.
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The system can measure angular changes as small as 0.25 arc sec, the level set by data

digitization. Electronics noise is about 0.2 arc sec RMS for the most sensitive pitch and roll

channels. The OSE recorded the position of the Sun relative to the Orbiter during the sunlit

portions of orbits 34, 35, and 39, for a total duration of three hours. It was necessary for the

OSE sensors to be oriented toward the Sun within two degrees before observations could be

made, and the Orbiter was held in a -zo solar inertial attitude with a deadband of 0.1 arc degree

during observations. The sensors were mounted to the top plate of GAS Canister G-507 and

aligned to the GAS Bridge within 1 arc rain in pitch and 7 arc rain in roll.

The two LISS were oriented to provide signals of opposite polarity for Orbiter pointing

deviation as a means of discriminating against unintended electrical noise pickup. The analog

signals from the sensor were passed through an 11 Hz lowpass filter with 12 dB/octave rolloff_

amplified, and sampled at a rate of 58 Hz for each of four (two pitch and two roll) data channels.

The data stream was recorded on a Lockheed 4200 tape recorder for playback after the mission.

The instrument was operated both with and without a solar input to determine the level of internal

electronic noise.

2.4 ESA Solid State Micro-Accelerometer

The primary objective of the Solid State Micro-Accelerometer experiment (SSMA) was to

test a new type of highly sensitive accelerometer in low-g to characterize performance in the

absence of the 1 g environment of Earth. The system was also designed to provide an engineering

test demonstration of the sensors to prove suitability for applications on future flights. The

SSMA was located in GAS Canister G-021. Each accelerometer unit included a small proof mass

(15 micro-gram) and supporting silicon springs fabricated from mono-crystalline silicon and

combined on a hybrid substrate with the analog readout electronics. The micro-structure and

associated micro-electronics were sealed and mounted in a standard, 14 pin dual-in-line

electronics package as an integral unit. The accelerometers were designed to operate within the

acceleration range +80 milli-g with a sensitivity of 125 volts/g and a frequency range from d.c. to

100 Hz.
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Twelve accelerometers (among which were two dummy units) were mounted in a three

axis array on a one axis vibrating table designed to provide variable calibration signals during

flight. Four accelerometers were oriented with their sensitive axis parallel to the vibration axis of

the table and to the Orbiter pitch axis (y-axis), 3 parallel to the Orbiter roll axis (x-axis), and 3

parallel to the Orbiter z-axis. The array configuration was chosen to assess the transverse effects

of the accelerometers and to compensate, at the processing level, for external disturbances. The

SSMA experiment consisted of 51 measurement sequences: 31 with excitations from 1 Bg to 40

milli-g at rates between 0.1 and 50 Hz (sinusoidal); 12 without excitation; and 8 self-test

sequences.

The Data Acquisition System was designed to sample, digitize, and store in a Mass

Memory Unit the signals of the 12 accelerometers; the thermistor readings of accelerometer

temperature; the displacement transducer signals from the vibrating table; the temperature and

voltage outputs from the Data Acquisition System; the temperature, pressure, and voltages from

the battery; and the signals from a Real Time Clock and an Advanced Real Time Clock. To

minimize the amount of stored data and to avoid aliasing effects, the accelerometers and

displacement transducer signals were sampled at 16 times the excitation frequency and filtered

through a digital signal processor with a cut-off frequency of 4 times the excitation and a rolloff

of-S0 dB.

2.5 Orbital Acceleration Research Experiment

The Orbital Acceleration Research Experiment (OARE) is a triaxial electrostatic

accelerometer package with complete on-orbit calibration capabilities.[3,4] The OARE consists

of three orthogonal, electrostaticaUy suspended proof mass sensors, a full in-flight calibration

station, and a microprocessor which is used for in-flight experiment control, processing, and

storage of flight data. The experiment system is designed to measure low frequency (<5 Hz),

low-level acceleration (nano-g sensitivity), and is principally directed at characterizing the

Orbiter's aerodynamic behavior in the rarefied-flow flight regime. The OARE system is mounted

as a payload on the floor of the cargo bay on a keel bridge spanning bay 11.
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2.6 High Resolution Acceleration Package

The High Resolution Acceleration Package (HIRAP) consists of a set of three orthogonal,

pendulous, gas-damped accelerometers, each with a resolution of 1 _tg and a measurement range

of approximately ±8000 _tg. The HiRAP is designed to measure high-altitude aerodynamic

acceleration on the Orbiter vehicle during atmospheric re-entry. The HiRAP is mounted in a wing

box of the cargo bay, such that the orthogonal HiRAP axes are aligned with the Orbiter body

axes. Data are collected at 112 Hz, and two lowpass filters at 20 I-Iz and 2 Hz are applied. The

HiRAP absolute accuracy over its twelve flights since 1983, after in-flight calibration, is 3 to 7 gig.

[5-14]

2.7 Space Acceleration Measurement System

The Space Acceleration Measurement System was developed to monitor and measure the

low-g environment of Orbiters in support of MSAD-sponsored science payloads.J15-17]

Resulting data are used by microgravity investigators in assessing the influence of acceleration on

flight experiments. On STS-40, SAMS was manifested to support the Solid Surface Combustion

Experiment (SSCE). SAMS consists of three remote triaxial sensor heads, connecting cables, and

a controlling data acquisition unit with a digital data recording system using optical disks with 200

megabyte storage capacity per side. With the availability of crew access to change the disks, data

storage capacity is essentially unlimited. On STS-40, three triaxial sets of Sundstrand QA-2000

sensors recorded data at 25 samples per second with a 5 Hz lowpass filter applied (140 dB/decade

rolloff). The SAMS control electronics and data recording package was mounted in the Spacelab

in SMIDEX Rack 5. The three triaxial sensor heads were mounted 1) on the Spacelab floor on

the base of the Body Restraint System, 2) on the connector bracket panel of the SMIDEX in Rack

5, and 3) on the SSCE in Rack 7, see Fig. 2. The orientations of the SAMS heads with respect to

the Orbiter coordinate system are given in Table 2.

3. Results

The accelerometer systems flown during STS-40 recorded data during a variety of time

periods. There is some overlap, however, early in the mission and especially during crew sleep
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periods. A comparison of the results from these periods provides an indication of the low-g

environment at various locations.

3.1 GTE Gallium Arsenide Crystal Growth Experiment

According to the pre-flight mission plan, the GTE experiment was to be activated at MET

02/10:35. The accelerometer system was to start recording data 4 hours, 55 minutes later.

Crystal growth was scheduled to begin at the same time as data recording. These times were

selected to coincide with a crew sleep period, to reduce the effects of crew related g-jitter. While

the exact time of experiment activation was not recorded, examination of the data indicates that

the full five hours of crystal growth and accelerometer data recording did take place during a

quiescent period.

Several general comments can be made about the GTE accelerometer data during STS-40.

Details have been presented previously.[1] The z-axis experienced the greatest variation and the

x-axis was the most quiet. The lesser quality of the accelerometer sensors used for the y- and z-

axes is apparent; the increased temperature dependence of these sensors was manifested as larger

drifts due to temperature variations.

The data collected indicate that a relatively quiet acceleration environment existed for the

GTE crystal growth experiment run. A total of 541 significant acceleration variations were

recorded on the three axes. Events were considered significant when a relative change of at least

lxl0 "5 g occurred. For variations of 10 -4 g or larger only 28 events were detected, with none in

the most sensitive experiment axis (x-axis). The largest difference in average acceleration during

the five hour crystal growth period was 2.5x10 -4 g.

3.2 WPI Fluid Behavior and Zeolite Crystal Growth Experiments

The GAS relay for this experiment package was activated at MET 00/10:47. The times

indicated on Fig. 3 are relative to that MET. The total run time for the experiment was

approximately 71 hours and acceleration data were continuously collected during that time. Fig.

3 shows a two hour record beginning at experiment start plus four hours and illustrates two basic

types of acceleration environment present during the experiment operation. Type A data were
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defined by pairs of acceleration pulses occurring approximately every 2 minutes with magnitudes

of 5 to 7 milli-g. This type of event is present during the entire 71 hours. Type B accelerations

have magnitudes on the order of 2 to 3 milli-g occurring at intervals of 10.1 seconds.

The Type A accelerations resulted from an electromechanical relay used to control the

oven heating system for the zeolite crystal growth experiment. The period was approximately 2.0

minutes early in the experiment and became 1.9 minutes near the end of the experiment because

decreasing payload temperature resulted in faster heat loss from the oven. Similarly, the duty

cycle increased from 17 to 18 seconds over the course of the experiment because lower battery

voltage necessitated greater heating times.

The Type B accelerations resulted from relays in a power conservation system. Whenever

precision temperature and pressure readings were required from the fluid behavior system, the

analog circuits were energized and de-energized at approximately 10 second intervals.

Between these events, accelerations on the order of 100 to 200 _tg were recorded. Thus,

the self-induced acceleration of the experiment package greatly exceeded the Orbiter accelerations

whenever electromechanlcal devices were in operation.

3.3 NASA/GSFC Orbiter Stability Experiment

The OSE was operated for a total of three hours on STS-40: MET 01/23:56 - 02/02:01

and 02/07:26 - 02/08:21. Only data from the first two hour interval have been processed to date.

That interval included two periods of solar observation separated by about 30 rain in the Earth's

shadow. During this period, the offset of the Orbiter's -zo-axis from the solar direction as the

vehicle moved in its deadband about its pitch axis (+y-axis) produced a signal reminiscent of a

rectified sine wave. Atmospheric drag forces typically rotated the Orbiter against one side of the

deadband. The motions of the Orbiter about its roll axis (+x-axis) were less regular in frequency.

The objective of the OSE was to record high frequency g-jitter in the Orbiter bay that

might be superimposed on the expected larger scale motion of the Orbiter within its deadband.

An initial scan of the first sunlit interval of observation indicates that any g-jitter must have been

at or below the limit of detectability (0.25 - 0.5 arc sec). A typical example of the signal output
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for pitch channel A during an interval including an assumed thruster firing (which reversed the

angular motion of the Orbiter) is shown in Fig. 4.

Power spectral densities were calculated for periods of interest. The reversal of Orbiter

motion due to a thruster firing at the extremes of its deadband is smooth. No detailed correlation

of the data has yet been made, however, and it is not clear to what extent the smooth reversal of

attitude is the result of a sequence of thruster firings or reflects a low frequency response by the

Orbiter to a single firing. In any case, no angular vibrations at frequencies above about 1 Hz

attributable to a vernier thruster firing are detectable with the present instrument.

3.4 ESA Solid State Micro-Accelerometer

The GAS relay for G-021 was activated at MET 00/10:37. The SSNLA. sequences started

4 hours, 33 minutes later during the first crew sleep period. From post-flight data analysis, no

significant differences were found between the on-ground and the in-space performance of these

new accelerometers. The measured noise of the devices was 0.1 _tg RblS (0.6 _tg/Hz). The

success of the SSMA experiment demonstrates that the new type of accelerometers based on

silicon technology are suitable and adequate for low-gravity applications.

The SSMA also provided measurements of the dynamic environment, mainly during the

experiment sequences for which the vibrating table was not excited and when the amplitude of

induced accelerations was below 100 Bg. The amplitudes of the micro-dynamic disturbances

observed during the experiment were on average below 10 to 50 p.g with the exception of some

peak events correlated with Orbiter thruster firings. It was clear, after processing, that the

relatively large signals observed in the time domain were essentially due to strong disturbances at

specific frequencies. Fig. 5 shows data from Experiment Sequence No. 5. In the time domain,

the 1 Hz/6 lag calibration signal is clearly visible together with two strong external perturbations.

Frequency modes of 3.7 Hz and 4.7 Hz dominate the frequency domain representations of this

time period.

Other frequency modes related to the vibrating table, Orbiter structural modes, and the

Orbiter Ku band antenna (17 Hz) were observed in sequences of SSMA data. Within the low
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frequencyobservationband(d.c. - 1Hz), the accelerationlevelsarevery low. Long periodsof

quietenvironmentin low frequencyregimescanbe found in betweensuccessiveOrbiter thruster

firing events. The 4.7 Hz signal,observedconsistentlyin the frequencydomain,could also be

clearlydiscernedin thetimedomainassociatedwith strongeventssuchasthrusterfirings.

3.5 Orbital Acceleration Research Experiment

Because of its sensitivity, the OARE instrument detects aerodynamic behavior of the

Orbiter while in low-Earth orbit. A typical sleep period (MET 07/16 - 07/18) was examined on

STS-40. The results of the examination for the spacecraft y-axis are shown in Fig. 6. During the

flight, a "trimmed-mean" filter was applied to the data which were stored aboard the Shuttle in the

OARE data storage system.J3,4] An acceleration model which includes aerodynamic, gravity

gradient, and rotational effects was constructed and compared with flight data. Comparison of

the model to the flight data shows the instrument to be sensitive to all major expected low

frequency acceleration phenomena in the y-axis. Variation of atmospheric drag among orbits was

on the order of+2xl0 -7 g. Some erratic instrument bias persists in the x- and z-axes. In these

axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by

making arbitrary bias adjustments.

3.6 High Resblution Acceleration Package

On STS-40, HiRAP data were recorded during ascent, orbit, and re-entry. During re-

entry, aerodynamic control surfaces used for Orbiter attitude and control require hydraulic power.

This power is provided by a set of three auxiliary power units (APU). The exhaust gas ports for

these pulsed turbines are located on the top of the Orbiter just in front and to the sides of the

vertical tail. The exhaust jets of gas produce accelerations in the Orbiter negative z-direction.

These APU accelerations were measured and recorded by HiRAP.

Fig. 7 shows the I-fiRAP z-axis re-entry acceleration measurements for STS-40. The APU

signals become evident at two times during Orbiter descent: just before the deorbit burn and just

before the onset of atmospheric drag. The 112 Hz HiRAP data have been averaged over one

second intervals to permit characterization of the acceleration changes. The time history of this



B-13

datasegmentshowsa shift at the ignition of the first APU, a sensor saturation during deorbit

bum, a second shift at the ignition of the second and third APU, and the onset of atmospheric

drag. The scattered points are the averaged thruster induced acceleration spikes.

In the region surrounding the first APU transition, a measurement of the data shift

represents a bias of about 15 _tg. Data from the second and third APU transition show a shift of

about 32 _tg. It is at the second APU transition region that an in-flight HiRAP calibration is

performed. This 32 l.tg shift is incorporated in the calibration aerodynamic signal. The shifts in

the z-axis acceleration signal are consistent with shifts found in prior HiRAP mission data.[5-14]

3.7 Space Acceleration Measurement System

The SAMS units collected data for approximately 7 days during STS-40: MET 01/00:57

- 08/01:38. SAMS was powered down twice during this time to allow operation of the Rotating

Dome Experiment. Initial processing of the SAMS data as reported in the ACAP Early Summary

Report[17] includes calculation and plotting of 10-second means and 1-second RMS for 2-hour

periods and frequency domain representations of composite magnitude spectra in color

spectrogram form. Data correction for bias and temperature variations used both Sundstrand

supplied information and information derived from mission data. Detailed analysis of specific

segments of the STS-40 SAMS data has focused on periods of thruster firings. Fig. 8 shows an

example of a visual correlation of thruster firing occurrences with 1-second mean SAMS data

during a period of otherwise low-level activity. Resulting accelerations (vector magnitude)

reached 10 -2 g. Variations in thruster-related acceleration result from the different combinations

of jets fired and different pulse strength and firing duration. Fig. 9 shows a detailed example of

one axis of SAMS data during a vernier thruster firing. Note that the effect of the firing is an

overall linear shift of the vehicle, reflected in a shift of the mean acceleration.

In general, the acceleration environment measured by SAMS during STS-40 is

summarized as follows. During sleep periods, acceleration magnitudes were in the 5 ktg range.

During periods of crew activity, magnitudes ranged from tens to hundreds of p.g. As seen in

previous studies of Orbiter acceleration environment,[18-21] spectral representations of SAMS
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data were dominated by specific Orbiter and Spacelab structural modes, most notable are the 3.5,

4.7, 5.2, 6.2, and 7 Hz modes. The three modes >5 Hz are modulated by the 5 FIz lowpass filter

applied to the data.

4. Discussion

The accelerometers which flew on STS-40 provided data in the frequency range up to 100

Hz (ESA SSMA), but most were restricted to an upper bound of about 10 Hz. This limited the

contribution of higher frequency vibration and noise to the measured data, making the STS-40

data some of the "quietest" acceleration data collected on an Orbiter mission. During crew sleep

periods, acceleration magnitudes in the 10-6 to 10 -5 g range were recorded in the Spacelab

module and on the GAS Bridge Assembly. The acceleration magnitudes increased to the 10 -4 g

level during periods of nominal crew activity. Vernier thruster firings caused acceleration shifts

on the order of 10 -4 g and primary thruster firings caused accelerations as great as 10 -2 g. The

WPI accelerometer system recorded a number of' acceleration events in the milli-g range which

were identified as experiment related. The OSE accelerometer system measured no angular

vibrations with frequencies greater than 1 I-Iz during a period of vernier firings. This is attributed

to the g-jitter levels being below the instrument's limit of detectability. The HiR.AP data show

variations on the order of 10 -5 g during APU firings during Orbiter re-entry. This is consistent

with data collected during previous flights of HiRAP, but cannot be compared with other STS-40

accelerometer data because of the data collection time. OARE measured low frequency

accelerations consistent with a model of atmospheric and aerodynamic effects.

Frequency domain analysis was applied to OSE, SAMS, and SSMA data. The SAMS and

SSMA data show the typical excitation of Orbiter and Spacelab structural modes that is expected

in accelerometer data. The most common of these modes in the STS-40 data are those at 3.5,

4.7, 5.2, 6.2, and 7 Hz. The SSMA, recording data at a higher sampling rate than other

instruments on STS-40, also measured the 17 Hz Ku-band antenna dither and Orbiter structural

mode. The fact that the 4.7 Hz Spacelab mode was recorded by the SSMA on the GAS Bridge
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Assemblyleadsus to reevaluateour understandingof how accelerationspropagateacrossloosely

coupled structures. Further analysisof this phenomenonis required. Before drawing any

conclusionsabout the Orbiter low-g environment,however, one must keep in mind that the

environmentmonitoredby SSMA was that of the accelerometerheadlinked to the cargo bay

throughthevibratingtable,theGAScanister,andthe GASBridgeAssembly.

The flight of the sevenaccelerometersystemsdiscussedhere made STS-40 the best

instrumentedlow-g Orbiter flight to date. The analysis to date has greatly fortified our

knowledge of the typical acceleration environment of a manned Orbiter in low-Earth orbit.

Further work, specifically additional frequency domain analysis, comparisons of thruster firing

times with accelerometer data, and comparisons of data from accelerometers in the Spacelab and

on the Gas Bridge Assembly, will greatly increase our understanding of the propagation of

accelerations throughout and across structures of the Spacelab and Orbiter.
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Figure Captions

Fig. 1. General locations of the Spacelab Module and GAS Bridge Assembly on Columbia

during STS-40.

Fig. 2. General locations of SAMS units in the Spacelab Module during STS-40: on the base of

the Body Restraint System (BRS), on the connector bracket panel of the SMIDEX in

Rack 5, and on the SSCE in Rack 7.

Fig. 3. Peak acceleration magnitude versus time recorded by the WPI accelerometer system.

Note Type A accelerations resulting from an electromechanical relay and Type B

accelerations resulting from power conservation system relays. Time is from initiation

of experiment operations.

Fig. 4. Output of the OSE high sensitivity pitch channel during an interval when vernier

thrusters were active. Pitch offset is the angle between the solar direction and the

optical axis era sun sensor. Time is from initiation of experiment operations.

Fig. 5. Time history (a) and frequency domain representation (b) of SSMA y-axis data during

Experiment Sequence 5. Note the 1 Hz / 6 lag calibration signal and structural

frequency modes of 3.7 and 4.7 Hz.

Fig. 6. OARE y-axis flight data compared with calculated atmospheric-aerodynamic model.

Time is in MET.

Fig. 7. HiRAP z-axis (1.0 sec mean) uncalibrated reentry data. Time is in GMT.

Fig. 8. Overlay of thruster firing occurrences with 1-second mean SAMS data during a period

of low-level activity. Solid circles denote firings of vernier thrusters; open circles denote

firings of primary thrusters.

Fig. 9. Y-axis SAMS data during a period of vernier thruster firings. Note that the resultant

linear shift of the vehicle is reflected in a shii_ of the 1mean acceleration in the time

domain (a) and an increased d.c. component in the frequency domain Co).
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Table 1. STS-40 Accelerometer Systems

Accelerometer

System/Experiment

Fluid Behavior and Zeolite Crystal

Growth Experiments

Gallium Arsenide Crystal Growth

Orbiter Stability Experiment

OARE

HiRAP

Solid State Micro-Accelerometer

SAMS

Investigator /

Contact Person

William W. Durgin

David H. Matthiesen

Werner Neupert

Robert C. Blanchard

Organization/Affiliation

Worcester Polytechnic Institute

. ,f

Case Western Reserve University

/ NASA LeRC

NASA GSFC

NASA LaRC

Robert C. Blanchard NASA LaRC

Philippe Roussel ESA

Richard DeLombard NASA LeRC
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Table 2. Orientation of SAMS with respect to the Orbiter on STS-40.

Sensor Head SAMS Orientation With Respect to Orbiter

Xo Yo Zo

Spacelab floor Ys -Zs -Xs

Rack 5 -Ys* -Xs* -Zs*

Rack 7 -Ys -Xs -Zs

*with -28.9 ° rotation about Ys
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alnma
The first NASA Spacelab Life Sciences mission (SIS-l)

flew 5 June to 14 June 1991 on the orbiter Columbia (STS-40).
The purpose of themission was to investigate the human body's
adaptation to the low gravity conditions of space flight and the
body's readjustment after the mission to the 1 g environment of
earth. In addition to the life sciences experiments manifested for
the Spacelab module, a variety of experiments in other scientific
disciplines flew in the Spacelab and inGetAway Special (GAS)
Canisters on the GAS Bridge Assembly. Several principal
investigators designed and flew specialized aecelerometer sys-
tems to characterize the low gravity environment This was
doneto betterassesstheresultsof their experiments. This was
also the Rrst flight of the NASA Microgravity Science and
Applications Division (MSAD) sponsored Space Acceleration
Measurement System (SAMS) and the fast flight OftheNASA
Orbiter Experiments Office (OEX) sponsored Orbital Accel-
eration Research Experiment accelerometer (OARE). We
present a brief introduction to seven STS.40 aecelerometer

systems and discuss and compare the resulting data.

The fwst NASA Spacelab Life Sciences mission (SIS-l)
flew 5 June to 14 June 1991 on the orbiter Columbia (mission
STS-40). The purpose of the mission was to investigate the
human body's adaptationto the low gravity conditions of space
flight and the body's readjustmentafter the mission to the 1 g
environment of earth. In addition to the llfe sciences experi-
ments manifested for the Spacelab module, a variety of experi-
menus in other scientific disciplines flew in the Spacelab and in
Get Away Special (GAS) Canisters on the GAS Bridge Assem-
bly. To better assess the results of the various experiments,
several principal investigators designed and flew aeceler-
ometer systems. This was also the rwst flight of the MSAD-
sponsored SAMS and the first flight of the OEX-sponsored
OARE. In the following section, we introduce seven accel-

erometer systems which measured and recorded acceleration
levels during STS-40 and discuss the resulting data.

2. Aecelerometer Systems. Data. and l_e.,_Its

The STS-40 accelerometer systems to be discussed are
listed in Table I. :_

, : ...,=

Table 1. STS-40 Accelerometer Systems

Accaeromem" ]hn,est_tor I
System/Exper_eat Contact Person

Oripnizaam/
Affiliatiou

Fluid Bdlavior md Wdliam W. Durgin Wcxeest_
zeo te r'dyted 
GrowthExpezime_ lnslimte

&allima_ David K _ Case Weszma

Crystal Growth Reserve Univ.

Orbiter Stability Werner Neupert NASA GSFC
Exp_ , .

OARE _ C,.Blmdmnt NASA LaRC

HiRAP Rolx_ C. Blmdm-d NASAl.aRC

_ State PhiI_" Roussd ESA
Mk:m-Acceiemme_

SAMS Richard Dd.s3mlxud NASA Le.RC

2.1 GTE Gallium AJ_enideCrystal Growth Exneriment

The GTE experiment was designed to study the effect of
redtr.odgravityonthegrowthofgallium a_enidesemionndmtor
material. I The experiment was located in GAS CanisterG-052
and was oriented with the aecelerometer x- and y-axes parallel
to those of the Orbim- and with the z-axes anti-parallel. A

SundstrandQA -2000 sensor wasaligned with the crystal gsowth
axis(x-axis)andQA-1400sensorswereusedinthey-andz-

directions. The measurement range for the system was lxl0 -5

All riSbn _d.



clear to what extent the smooth reversal of attitudeis the result

of a sequence of thruster firings or reflects a low frequency
response by theOrbiterto a single firing. In any case, no angular
vibration at frequencies above about 1 Hz attributable to a
vernier thruster fu£ng is detectable with the present insu'ument.

2.4 ESA Solid State Micro-Accelerometcr

The primaryobjective of the Solid State Micro-Acceler-
ometer experiment (SSMA) was to test a new type of highly
sensitive accelerometex in low-g to characterize the instrument
performance. The system was designed to provide an engineer-
ing test demonstration of the sensors to prove suitability for
applications on futureflights. The SSMA was located in GAS
Canister G-021. Twelve accelerometers (includingtwo dummy

units) were mounted in a three axis array on a one axis vibrating
table designed to provide variable calibration signals during
flight. Four accelerometers were oriented with their sensitive
axis parallel to the vibration axis of the table and to the Orbiter
y-axis, three parallel to the Orbiterx-axis, and three parallel to
the Orbiter z-axis. Each accelerometer unit included a small

proof mass (15 micro-gram) and supporting silicon springs
fabricated from mono-crystalline silicon and combined on a
hybrid subslrate with analog readout electronics. The micro-
structure and associated micro-electronics were sealed and

mounted in a standard, 14 pin dual-in-line electronics package
as an integral unit.

The SSMA was designed to olin'ate in the range _ milli-g
with a sensitivity of 125 volts/g and a frequency range of d.c. to
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Time history (a) and frequency domain representadonCo)of SSMA y-axis data
during Experiment Sequence 5. Note the 1 Hz/6 lagcalibration signal and structural
frequency modes of 3.7 and 4.7 Hz. Data were sampled at 16 Ha and a 4 Hz cutoff

was applied in processing.
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Overlayoffltrusmrfgingoccurrencesandl-secondmean SAMS dam. Solidcircles

deno_vernierthrusterfwings,opencirclesdenoteprimarythrusterfirings.

Variation of atmospheric drag among orbitswas on the orderof
+gx10 "7 g. Some erraticinstrumentbias persists in the x- and
z-axes.Intheseaxes,theOARE datacanbe madetomatcha
comprehensiveagnosphcric-aerodyrmmicmodelby making
arbitrarybiasadjusunents.

2.6HighResohfionAccelerationPackage

TheHighResolutionAccelerationPackage(HIRAP)con-

sistsof a setof threeonhogonal,pendulous,gas-damped
accclerometers,eachwitharesolutionofIttgandameasure-

mentrangeof approximately_ ttg. I-TtRAPis designed to
measure high-altitude aerodynamicacceleration on the Orbiter
vehiclediningatmosphericre-entry. TheHiRAP is mountedin
a wing box of the cargo bay, such that theo_ogonal HiRAP
axesarealigned with theOrbiterbodyaxes.Data arecollected
at 112 Hz, and two lowlmss f'dtctsat20 Hzand2 Hz areapplied.

HiRAP absoluteaccuracyoveritstwelveflightssince1983,
afterin-flightcaFurafion,isintherange3to7l,tg.4"13

DuringR-entry,aerodynamiccontrolsurfacesusedfor

Orbiter attitudeand control require hydraulic power.This

poweris providedbya setofthreeauxiliary power units (APLD.
Theexhaustgasportsfortheselmlscdturbinesarelocatedo,fl_e

topoftheOrbimrjustinfrontandtothesidesoftheverticaltail.

The exhaust jets of gas produce accelerations in the Orbiter
negative z-direction. These APUaccelerations were measured

and recorded by HiRAP.
The APU signals become evident at two times during

Orbiterdescent:just before the deorbit bum andjust before the

onset of annospheric drag. The 112 Hz IXaRAPdam wee
averagedoverone second intervalsmpermit c_ of
the acceleration changes. A time history of Ibis period showsa
shiftat the ignitionof the fu-stAPU, a sensor saturation during
deorbitburn,a s_,ond shiftat the ignition of the second and thixd
APU, andtheonset ofdominantatmospheric drag.

Aroundthe fizstAPUwansidon, ameasurementofthedam
shift showsa bias ofabout 15 lag. Datafromthesecondandthint
APU transifiomshow a shift of about32 lag. It is at the second
APU wansidon regionthatanin-flightI-fiRAPcalibrationis

performed.This32IJgshiftisin_ in the calibrafio_
aerodynamicsignal.The shiftsinthez-axisaccelerationsignal

are consistent with the shifts found in prior HiRAP missions.

2.7Space Acceleration Measurement System

The Space Acceleration MeastLrement System was devel-
oped tomonitorand measure the low-genvironmentofMSAD-
spon_red scietw.epayloads on theOrbiter. 14,15SAMS consists
of threeremoteuiaxial sensorheads,connccdngcables,anda
conu_ollingdam acquisition unit with a digital dam recording
systemusingop6caldiskswith200megabytestoragecapacity
perside.Wkh crewaccessm changethedisks,thedam storage

capacity iscsscatially unlimited. OnSTS-40, threeuiaxial se_
ofSundswandQA-2000sensocsrecordeddam at25samples per
second with a 5 Hz lowpassfdtcr applied (140 dB/dccade
tailor0. The SAMS controlelectronicsand dam recording

package was mounted in the Spacelab in SMIDEX Rack 5;
SAMS wasmanifestedto supporttheSolidSm-faceCombus.
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SAMS, and SSMA dam. The SAMS and SSMA data show
typical excitation of Orbiter and Spacelab sm_ctmal modes.
Themostcommon ofthesemodesintheSTS .40dataarethose

at3.5,4.7,5.2,6.2,and7Hz. TheSSMA, recordingdataata

highersamplingratethanotherinstrumentsonSTS-40,also
measuredthe17Hz Ku-bandantennaditherandOrbitersu'uc-

ruralmode. The factthatthe4.7Hz Spacelabmode was

recordedbytheSSMA ontheGAS BridgeAssemblyleadsus
toreevaluateourunderstandingofhow vibrationspropagate

acrosslooselycowled structures.Furtheranalysisofthis

phenomenonisrequired.
The flightofthesevenacceleromctersystemsdiscussed

heremadeSTS-40thebestinstrumentedIow-gOrbiterflightto

date. The analysishasincreasedourknowledgeof thetypical
accelerationenvironmentofamannedOrbiterinlow-Earth

orbit.Furtherwork,specificallyadditional frequencydomain

analysis, comparisons of thrusterruing times with accelemm-
eterdata,and comparisons ofdatafromaccelemmctersinthe
SpacelabandontheGasBridgeAssembly,willgreatlyenhance

our understanding of the propagationof accelerations through-
out and ac_rgssstructures of the Spacclab and Orbiter.
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